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Abstract
This work sets out a testing and containment framework
developed for reopening universities in Mexico following
the lockdown due to COVID-19. We treat diagnostic testing
as a resource allocation problem and develop a testing al-
location mechanism and practical web application to assist
educational institutions in making the most of limited test-
ing resources. In addition to the technical results and tools,
we also provide a reflection on our current experience of
running a pilot of our framework within the Instituto Tec-
nológico y de Estudios Superiores de Monterrey (ITESM),
a leading private university in Mexico, as well as on our
broader experience bridging research with academic policy
in the Mexican context.
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1 Introduction
Schools and universities around the globe have suffered ex-
tended closures due to regional and national lockdown mea-
sures following the COVID-19 pandemic. Due to the severe
impact of these closures on education, mental health and
social divides, it has been strongly recommended that edu-
cational institutions reopen as quickly and safely as possible
to ensure that future generations are not held back further
[20, 22]. At the same time, it has become clear that compre-
hensive testing strategies, including asymptomatic screening,
are essential to combat the spread of the virus [5, 13]. As edu-
cational institutions around the world prepare to reintroduce
in-person teaching, it is imperative that they do so safely,
with the help of judicious testing and containment strategies
[21]. This is particularly challenging in low- and middle-
income countries (LMICs) with severe constraints on testing
resources. We present a testing and containment framework
aimed at helping educational institutions in LMICs make
the most of extremely scarce testing resources, and also pro-
vide an online allocation software to guide decision-making.
Our methods, which are currently being piloted at the In-
stituto Tecnológico y de Estudios Superiores de Monterrey
(ITESM)–a leading private university in Mexico–make use
of the heterogeneity of university populations as well as
pooled qPCR tests in order to balance two competing ob-
jectives: minimising potential viral spread (and subsequent
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critical cases), as well as minimising the number of healthy
individuals who unnecessarily self-isolate under a given con-
tainment protocol.

We consider the setting in which the population is divided
into categories based on characteristics which include in-
dividuals’ potential exposure to the virus (based on their
occupation in the institution), their geographical location,
and/or the potential of an infection becoming critical. The
testing strategies we propose divide a given budget of tests
among the population categories. Our mechanism utilises
group testing, where samples from multiple individuals are
pooled and tested with a single qPCR test. A positive test
result indicates that at least one individual in the pool is
infected, whereas a negative result indicates that all individ-
uals tested are healthy. As a function of the test results, we
propose simple containment mechanisms and subsequently
measure the performance of different test allocations accord-
ing to how many critical cases are prevented overall and
how many individuals from a given category unnecessarily
self-isolate.

Outline. In Section 2, we introduce our testing and con-
tainment mechanism, and outline the contagion model we
developed to capture viral spread within heterogeneous uni-
versity populations. Section 3 describes the family of testing
and containment protocols we consider, as well as formal
expressions for the multiple objectives we optimise for via
computation. We provide details on our current pilot in Sec-
tion 4, with an emphasis on three main deliverables from
our software: extrapolating relevant model parameters from
university data, computing the Pareto frontier of testing
allocations, and providing a user-friendly interface for nav-
igating and choosing testing allocations along the Pareto
frontier . Section 5 provides further simulation evidence that
our testing allocations provide long-term results over sus-
tained periods of infection within a population. Section 6
provides a reflection regarding our experience bridging re-
search and practice in the Mexican context. Finally, Section
7 elaborates on next steps for our pilot.

Related Work. The use of testing resources to mitigate
the spread of an infectious pathogen has been intensely de-
bated during the current pandemic [7, 16]. The idea of com-
bining several samples into a single group test in order to
reduce the numbers of tests required has previously been
studied in a substantial body of literature in Computational
Learning Theory [6, 8–10, 26]. Group testing has been ap-
plied against HIV and other diseases [18, 25]; in the current
pandemic, it has been verified experimentally with SARS-
CoV2 samples [23, 27]. A growing body of work has inves-
tigated the use of group testing as a possible way towards
testing large parts of the population [1, 2, 4, 11, 12, 19]. Work
in the testing literature has largely focused on minimising
the number of tests required to fully determine precisely
whom is infected in a population. Turning the problem on

its head, we instead consider the problem of identifying a
mechanism that maximises the benefit of a fixed (and scarce)
weekly testing budget.

2 Our Model for Testing and Containment
We consider a heterogeneous population of 𝑛 individuals par-
titioned into𝑘 disjoint categories𝐶1, . . . ,𝐶𝑘 of sizes𝑛1, . . . , 𝑛𝑘 .
The partitioning is chosen to capture the heterogeneity of
the population, with ‘similar’ individuals being placed in
the same category. On a school and university campus, one
might partition the population into school students, under-
graduates, postgraduates, academic teaching staff, and ad-
ministrators.
Throughout, we assume that the educational institution

in question has a limited budget of 𝑇 tests per time period
that it wants to use optimally.1 We treat the decision of
how to maximise the use of limited testing resources to
the population categories as a resource allocation problem
that balances two objectives: reducing the virus spread and
minimising the impact of quarantining on the population.
In order to achieve this, we define the following testing
and containment protocols, for which we can subsequently
quantify these two objectives. Our protocols approach this
problem via the use of pooled or group tests.

Group Testing. In what follows, we assume that we have
access to group testing (also known as pooled testing) for
COVID-19. In a group test of size 𝑔 ∈ N, samples from 𝑔 indi-
viduals are pooled into one sample and subjected to a single
qPCR test. A positive result on the pooled test implies that
at least one of the 𝑔 individuals is infected, and a negative
result implies that all are healthy. We let𝐺 ∈ N denote the
upper bound on feasible group sizes, which is dictated by bi-
ological and laboratory constraints. Our partner laboratories
in Mexico have validated the group testing methodology of
Sanghani et al. [23], which permits testing with groups up
to size 10.

Testing Strategies. Recall that 𝑇 is the number of tests
available to the educational institution per time period. We
consider a space of testing protocols parameterised by a
pair of vectors (𝒕,𝒈), where 𝒕 ∈ N𝑘 and 𝒈 ∈ {1, . . . ,𝐺}𝑘 . A
testing strategy (𝒕,𝒈) specifies the number of tests allocated
to each population category, and their group sizes: 𝑡𝑖 tests
are allocated to disjoint groups of size 𝑔𝑖 from category 𝐶𝑖

uniformly at random.2 Note that this implies the constraints
𝑔𝑖 ≤ 𝐺 and 𝑡𝑖𝑔𝑖 ≤ 𝑛𝑖 , for every category 𝐶𝑖 . We also impose
the budget constraint

∑
𝑡𝑖 = 𝑇 on any testing strategy, as we

wish to maximise the use of the given testing budget. We
1In our pilot study, the university has sufficient resources to test approxi-
mately 1 − 6% of a campus population individually every week. For most
campuses this results in a testing budget of around 20-50 tests per week.
2Note that 𝑔𝑖 = 1 for some category 𝐶𝑖 implies that the testing strategy
performs individual tests for category𝐶𝑖 .
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say that a testing strategy (𝒕,𝒈) is feasible if it satisfies these
constraints.

Containment Protocol. We propose a conceptually sim-
ple containment protocol: whenever a group test is negative,
everyone in the group continues to function normally. If the
test is positive, everyone in the group is told to self-isolate
for a given period of time. In our pilot study, individuals are
quarantined for 14 days. Note that this reduces the number of
tests required to test a large number of individuals, and thus
has the potential of catching more infectious people. On the
other hand, it might lead to healthy individuals self-isolating
unnecessarily. In Section 3, we describe how testing strate-
gies can choose a desired trade-off between these conflicting
objectives for each category, by selecting appropriate group
sizes at which to test individuals in each category.

Contagion Model. For each category, we define parame-
ters that govern contagion in the population. Let us consider
an arbitrary category 𝐶𝑖 . We assume that all individuals
in category 𝐶𝑖 are independently infected with probability
𝑝𝑖 ∈ [0, 1] (and healthy with probability 𝑞𝑖 = 1 − 𝑝𝑖 ). Each
newly infected individual in 𝐶𝑖 has probability 𝑣𝑖 of devel-
oping a “critical” infection. Here the scope of ‘criticality’ is
defined by the university; it might, for instance, denote all
cases leading to hospitalisation or death, or it may encompass
all symptomatic infections.
After performing a given testing strategy (𝒕,𝒈), it is pos-

sible that some infected individuals are not self-isolating, as
they have not been subjected to a group tests. In order to
quantify the performance of different testing and contain-
ment protocols, ourmodel assumes a single step of contagion,
whereby each infected individual who is not self-isolating
may infect others. Each individual in 𝐶𝑖 is assumed to be
in contact with 𝑑𝑖 𝑗 ∈ {0, . . . , 𝑛 𝑗 } individuals from 𝐶 𝑗 . More-
over, each susceptible (healthy) individual in category 𝐶𝑖 is
infected by an infectious neighbour in 𝐶 𝑗 with transmission
probability 𝜋𝑖 𝑗 ∈ [0, 1]. The parameters 𝑑𝑖 𝑗 and 𝜋𝑖, 𝑗 can be in-
terpreted as connectivity or ‘exposure parameters’ between
categories 𝐶𝑖 and 𝐶 𝑗 . We note that 𝑑𝑖 𝑗 and 𝜋𝑖, 𝑗 need not be
symmetric.

3 COVID Testing Allocation as an
Optimisation Problem

We can now formally define the optimisation problem un-
derlying our choice of optimal testing strategies to contain
viral infections while minimising the disruption on educa-
tion at the institution. Recall that our goal is to balance the
two goals of reducing ‘critical cases’ while minimising the
number of unnecessarily self-isolating individuals.

3.1 Our Objectives
For a given feasible testing strategy (𝒕,𝒈), we define our
health objective 𝑂𝐻 (𝒕,𝒈) as the expected number of criti-
cal cases that are prevented in our single-step contagion
model when compared to no testing. For each category 𝐶𝑖 ,
we also define the category quarantine objective 𝑂𝑄,𝑖 (𝒕,𝒈),
which denotes the expected number of unnecessarily self-
isolating individuals in category 𝐶𝑖 under (𝒕,𝒈). Notice that
by minimising 𝑂𝑄,𝑖 , a mechanism prioritises preventing un-
necessary quarantining of individuals in the 𝑖-th category.
The health objective 𝑂𝐻 is optimised by covering more

individuals in tests (especially from segments with high infec-
tion or connectivity to other segments), whereas the contain-
ment objectives 𝑂𝑄,𝑖 are optimised by reducing the number
of healthy individuals that are quarantined unnecessarily as
a result of a positive group test. Note that our objectives are
conflicting: larger group sizes increase the reach of testing
and lead to fewer untested but infected individuals, while
smaller group sizes reduce the number of healthy individuals
who are quarantined unnecessarily.

Preventing Critical Cases. To completely specify our
health objective 𝑂𝐻 , we define the following auxiliary vari-
ables:

• The probability 𝑢𝑖 =
𝑛𝑖−𝑡𝑖𝑔𝑖

𝑛𝑖
that a given individual in

𝐶𝑖 is not tested.
• The probability 𝑧𝑖 = 𝑢𝑖𝑞𝑖 + (1 − 𝑢𝑖 )𝑞𝑔𝑖𝑖 that an individ-
ual in 𝐶𝑖 is healthy and not quarantining before the
contagion step of our model.

• The expected probability

𝛼𝑖, 𝑗 =
(
𝑝 𝑗𝑢 𝑗 (1 − 𝜋𝑖, 𝑗 ) + (1 − 𝑝 𝑗𝑢 𝑗 )

)𝑑𝑖 𝑗
that an individual from 𝐶𝑖 who is healthy and not
under quarantine becomes infected from untested and
infected individuals in 𝐶 𝑗 .

• The expected number 𝑓𝐻 (𝒕,𝒈) =
∑

𝑖 𝑛𝑖𝑣𝑖𝑧𝑖
(
1 − ∏

𝑗 𝛼𝑖, 𝑗
)

of critical cases that occur in the contagion step of our
model.

With this in hand, we can express the health objective as
follows:

𝑂𝐻 (𝒕,𝒈) = 𝑓𝐻 (0, 0) − 𝑓𝐻 (𝒕,𝒈)
To provide some intuition for this expression, let us fo-

cus on a given individual in 𝐶𝑖 . If they are in a positive test,
they quarantine and are hence not susceptible for conta-
gion. If they are healthy and not under quarantine (which
happens with probability 𝑧𝑖 ), they may then be infected by
untested, infected individuals from any 𝐶 𝑗 . An individual in
𝐶 𝑗 is untested with probability𝑢 𝑗 , and the overall probability
that an infection from 𝐶 𝑗 is received from 𝑑𝑖 𝑗 interactions
from individuals in 𝐶 𝑗 is given by 𝛼𝑖, 𝑗 . As we are interested
in the number of critical contagion infections we prevent,
we measure the performance of (𝒕,𝒈) relative to a testing
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strategy where no tests are used (given by 𝑓𝐻 (0, 0)). We refer
to Appendix B for further details on the construction of 𝑂𝐻 .

Minimising Unnecessary Quarantine. Although it is
desirable for our testing strategies to maximise 𝑂𝐻 , doing
so comes at the cost of increasing the number of individuals
who are told to unnecessarily quarantine. To account for this,
recall that the category quarantine objective 𝑂𝑄,𝑖 gives the
expected number of unnecessary quarantines in category 𝐶𝑖

for each testing strategy. Each individual is independently
healthy with probability 𝑞𝑖 = 1 − 𝑝𝑖 . This means that for
a single group test of size 𝑔𝑖 , the probability that the test
is positive is given by 1 − 𝑞

𝑔𝑖
𝑖
, and the expected number of

healthy individuals in a group of size 𝑔𝑖 conditioned on a
positive test is 𝑔𝑖 − 𝑔𝑖𝑝𝑖

1−𝑞𝑔𝑖
𝑖

. With this in hand, we can compute
the expected number of healthy individuals that are under
unnecessary quarantine after a single group test as follows:
𝑔𝑖 (𝑞𝑖 − 𝑞

𝑔𝑖
𝑖
). Finally, since we have 𝑡𝑖 of such group tests

allocated randomly to𝐶𝑖 , we obtain the complete expression
for the 𝑖-th quarantine objective:

𝑂𝑄,𝑖 (𝒕,𝒈) = 𝑡𝑖𝑔𝑖 (𝑞𝑖 − 𝑞
𝑔𝑖
𝑖
)

3.2 Solutions on the Pareto Frontier
As mentioned in the previous sections, our objectives com-
pete with each other and it follows that there no testing
strategy that dominates all other strategies in all objectives.
On the other hand, it is possible to rule out certain strategies
that perform worse than other potential feasible strategies.
The remaining solutions lie on the Pareto frontier, which is
a natural solution concept in multi-objective optimisation.
Defined below, the Pareto frontier, provides a set of mecha-
nisms that maximally exemplify the trade-offs incurred in
all objectives.

Definition 3.1 (Pareto Dominance). Suppose that (𝒕,𝒈) and
(𝒕 ′,𝒈′) are two distinct testing strategies. We say that (𝒕,𝒈)
Pareto-dominates (𝒕 ′,𝒈′) if, and only if, the following hold:
𝑂𝐻 (𝒕,𝒈) ≥ 𝑂𝐻 (𝒕 ′,𝒈′) and 𝑂𝑄,𝑖 (𝒕,𝒈) ≤ 𝑂𝑄,𝑖 (𝒕 ′,𝒈′) ∀𝑖 ∈ [𝑘]
with one of the inequalities being strict. We denote this
relation by (𝒕,𝒈) ≻𝑃 (𝒕 ′,𝒈′).

Our main approach consists of precisely finding the family
of feasible testing strategies that are not Pareto-dominated.

Definition 3.2 (Pareto Frontier). The Pareto frontier 𝑆𝑃
consists of the set of testing strategies that are not Pareto-
dominated by any other testing strategy.

We compute the Pareto frontier 𝑆𝑃 for the class of testing
mechanisms described above. Furthermore, we provide a
policymakers with a principled and intuitive way to choose
testing mechanisms from 𝑆𝑃 that fit their institutional needs.
We provide more details on the computation of 𝑆𝑃 and the
navigation tool in the next section, where we delve into the
specifics of the current pilot we have underway.

4 Details of the Pilot Study
A pilot of our methodology is currently underway at several
campuses of the Instituto Tecnológico y de Estudios Superi-
ores de Monterrey (ITESM). The pilot campuses were chosen
for two reasons: they are in close proximity to university
testing facilities with the capability to carry out group test-
ing, and they are located in states that have recently exited
lockdown. Therefore, students are able to return to a “hybrid”
teaching format, in which a subset of students are allowed
to return to in-person classes, and the university provides
preemptive monitoring of infections via a limited testing
budget per campus.
In line with our model from Section 2, our partners have

partitioned the population of each campus into 4 categories:
faculty (teaching and research), administrative assistants,
middle/high school students3, and undergraduate/graduate
students. Health administrators from the university are al-
ready using our software to guide their decision-making in
terms of how to allocate limited COVID-19 tests per campus.
The ITESM is a leading private university in Mexico with a
combined student and staff population of over 96,000 individ-
uals, all of whom are tested under allocations recommended
by our software. Our software pipeline completes three key
tasks:

1. Extrapolating key model parameters from university
data.

2. Computing the Pareto frontier of testing allocations
given model parameters.

3. Providing a user-friendly tool for navigating multiple
solutions along the Pareto frontier of allocations.

4.1 Model Parameter Estimation
We estimate the parameters for the model using data pro-
vided by our university partners from Mexico pertaining to
course records, attendance records for these courses, and
information regarding the buildings visited by the individu-
als in the population. More specifically, our partnering uni-
versity in Mexico currently maintains internal anonymised
databases with the following information:

• Per-individual information regarding membership in
the population categories described above.

• Information on taught courses (instructors, student
attendance, classroom size/ventilation, classroom lo-
cation).

• COVID-19 testing results.
• Residual water test results.4

We use this information to directly estimate the connectiv-
ity parameters 𝑑𝑖 𝑗 of each of the categories specified. To do
so we look at each individual from category𝐶𝑖 and count the
3Our partner institution also teaches middle and high school students at
various campuses
4Residual water results can alert administration of the presence of COVID-
19 at the building level of a given campus[24].
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number of classroom or office interactions they have with
individuals of category 𝐶 𝑗 (we count repeat interactions as
well). We take the average over all individuals in 𝐶𝑖 to pro-
duce 𝑑𝑖 𝑗 . Notice that 𝑑𝑖 𝑗 is not necessarily integral, but we
can compute the health objective 𝑂𝐻 as per the formula in
Section 3.1. This process is repeated for all 𝑖, 𝑗 ∈ [𝑘] (where
we allow 𝑖 = 𝑗 ).

In order to estimate transmission probabilities, we im-
plement methodology from Buonanno et al. [3], alongside
key input from epidemiological experts from our partner
university. More specifically, the epidemiologists provide us
with reasonable estimates to key parameters to the model
of Buonanno et al. (such as room ventilation rates and indi-
vidual inhalation/exhalation rates), which are informed by
the data contained within the databases mentioned above,
since they contain information on the quantity of individuals
who sit in classroom at any given time of instruction. For
a given 𝑖, 𝑗 ∈ [𝑘], we let 𝜋𝑖 𝑗 be the average transmission
probability from individuals of 𝐶 𝑗 to individuals of 𝐶𝑖 as per
our contagion model.
Baseline probabilities of infection 𝑝𝑖 are estimated using

results of the previous COVID-19 tests and additional resid-
ual waste water tests. Finally, although the vulnerability rate
𝑣𝑖 of a category will eventually be provided to us by epidemi-
ological experts from our partner university, we are currently
running our optimisation with 𝑣𝑖 = 1 for the pilot, so that
𝑂𝐻 represents the total number of infections prevented.

4.2 Computing the Pareto Frontier
Our algorithm for computing the Pareto frontier follows a
straightforward approach that iteratively elicits the solutions
in 𝑆𝑃 . Given fixed model parameters, we first compute the
number of critical cases that occur when no testing is applied
(𝑓𝐻 (0, 0) as per Section 3.1).

Next, initialise 𝑆𝑃 as the empty set. We iterate over all
possible testing strategies (𝒕,𝒈) that satisfy testing budget
and group constraints, and evaluate performance under the
health and per-category quarantine objectives 𝑂𝐻 and 𝑂𝑄,𝑖 .
For each testing strategy, we have three possible outcomes: If
(𝒕,𝒈) Pareto-dominates existing solutions in 𝑆𝑃 , we add it to
𝑆𝑃 and remove all dominated solutions. If (𝒕,𝒈) is incompa-
rable to any element of 𝑆𝑃 , we add it to 𝑆𝑃 without removing
any other solutions. Finally, if (𝒕,𝒈) is Pareto-dominated by
an element of 𝑆𝑃 , we do nothing. Once we have iterated over
all testing strategies, 𝑆𝑃 contains the Pareto frontier.

Pruning the Frontier. Recall from Section 2 that a test-
ing strategy (𝒕,𝒈) is feasible if 𝑔𝑖 ≤ 𝐺 ,

∑
𝑡𝑖 = 𝑇 , and 𝑡𝑖𝑔𝑖 ≤ 𝑛𝑖

for each category 𝐶𝑖 . Although this represents a rich space
of potential test allocations, our conversations with univer-
sity administrators and testing personnel revealed a strong
preference for only exploring a subset of potential testing
allocations due to laboratory and logistical constraints. Fur-
thermore, iterating over a reduced set of potential solutions

has the added benefit of improving the running time of our
algorithm, and providing a smaller resulting Pareto frontier,
which in turn is more amenable to decision making. For
this reason, our pilot iterates over group sizes in the range
𝑔𝑖 ∈ {1, 3, 5, 10} for each category.

Our conversations with university policymakers also re-
vealed a preference for being presented with fewer solutions
from the Pareto frontier to decide from at the time of pick-
ing testing allocations. In particular, it was felt that testing
strategies that achieve very similar outcomes in all objectives
should be treated as identical, and one representative solu-
tion be chosen for retention in the Pareto frontier. To address
this, we implemented a “bucketing” scheme, whereby the
performance of a given strategy (𝒕,𝒈) under 𝑂𝐻 and 𝑂𝑄,𝑖

was truncated so that solutions that lie in the same range of
values (the bucketing size) are bucketed together. The set of
solutions returned by the algorithm contains one (randomly
picked) representative per bucket, achieving the desired goal
of reducing the solution space that policymakers navigate.
The bucketing sizes per objective can be set as a parameter
in our software. Alternatively, we also provide a tool that
allows users to specify the desired number of solutions they
wish to view, and determines optimal bucketing sizes to (ap-
proximately) achieve this. More details on our bucketing
methods and our tool to restrict the number of solutions can
be found in Appendix C.

4.3 Web Application
We have developed a web application that assists university
administrators in exploring the Pareto frontier of testing
allocations to identify testing strategies that match their
priorities. A demo of the navigation tool is available as a
hosted app5 and the source code is provided at our GitHub
repository6. Figure 2 in appendix A shows a demo screen-
shot, in which we have used model parameters similar to
those extrapolated from our partner university as detailed
in Section 4.1. Pareto-dominant testing strategies are com-
puted with the bucketing technique described in Section 4.2,
and are made available to view through the web application.
For each strategy (𝒕,𝒈), the application displays how well
it performs on each of the health and quarantine objectives.
In order to identify desirable strategies, administrators can
set thresholds on the expected number of people in each
category unnecessarily self-isolating and the number of crit-
ical new cases, allowing them to find the desired balance
between the different objectives. In general, there will be
more than one strategy that satisfies the thresholds. The app
shows the number of strategies, as well as their containment
and health outcomes, and allows the user to iterate through
and compare multiple solutions. Moreover, the application
allows the user to save solutions for future reference.
5https://eaamo-demo.azurewebsites.net
6https://github.com/hguzmang/eaamo

https://eaamo-demo.azurewebsites.net/
https://github.com/hguzmang/eaamo
https://github.com/hguzmang/eaamo
https://eaamo-demo.azurewebsites.net
https://github.com/hguzmang/eaamo
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4.4 Preliminary Results
In a preliminary run of our pilot, our algorithm explored
2739 allocations for one campus, and identified 80 solutions
as lying in the Pareto frontier. After applying sensible buck-
eting parameters to filter out solutions with almost identical
outcomes, only 20 solutions remained. It follows that our
algorithm categorically filters out 97% of potential testing
allocations without bucketing, and 99% of solutions with
our bucketing technique. This reduced solution set was well-
received by the university administrators tasked with select-
ing a testing strategy for the campus.

5 Simulations
Wedeveloped a network - based susceptible - infected - recov-
ered - quarantined (SIRQ) model on a simulated university
population consisting of 9, 000 students, 500 professors, and
500 cafeteria workers. Professors and cafeteria workers were
assumed to have a much higher degree of connection than
students. Using the definition of the exposure parameter 𝑑𝑖 𝑗
from Section 2 and the method for estimating it from Section
4.1, we obtained

𝑑𝑖 𝑗 =
©«
4.92 1.34 1.27
24.28 1.44 1.26
23.0 1.26 1.44

ª®¬ , (1)

with 𝑖 = 1 assigned to students, 𝑖 = 2 to cafeteria workers,
and 𝑖 = 3 to professors. A simple example of how 𝑑𝑖 𝑗 can
be used is the following: on average, a professor is exposed
to 23 students (𝑑3,1) whereas a student is only exposed to
1.27 professors (𝑑1,3). In the infection model we developed,
at each time step an infected node recovers with probability
𝛾 = 0.0427 and, unless it is quarantined, infects one or more
of its susceptible neighbouring nodes, each with probability
𝛽 = 0.01. These parameters were chosen such that average
number of secondary infections is 𝑅0 ∼ 3 on the simulated
network [17]. It has been shown that the testing and contain-
ment strategy we developed performs better than a random
allocation of tests [14, 15]. In these simulations, we show two
different solutions on the Pareto frontier. We select allocation
profiles with different values of the quarantine objectives
𝑂𝑄,𝑖 . The results are shown in Figure 1. This plot shows the
number of individuals in quarantine on the ordinate whilst
the abscissa of the graph accounts for the number of days
since the outbreak started. Four curves are presented sig-
nalling two different allocation profiles, (𝐴) and (𝐵), and
two different categories, professors, and cafeteria workers.
In allocation profile (𝐴), represented with blue, we priori-
tise minimising professor quarantine over cafeteria workers
and students. In allocation profile (𝐵), represented with red,
we prioritise both professors and cafeteria workers equally.
Both professors’ curves are solid lines, and the cafeteria
workers’ curves are shown as dotted. In the case of profile
(𝐴), the number of cafeteria workers in quarantine is around
a hundred more compared with the number of professors

in quarantine over the eighty-day period. In the case of pro-
file (𝐵), the number of cafeteria workers in quarantine and
the number of professors in quarantine remain practically
the same until around day forty, where on average around
fifty professors more are in quarantine compared to cafeteria
workers. As expected, the different allocation profiles lead to
different numbers of professors and cafeteria workers being
in quarantine at any one point in time. This simple example
shows the flexibility offered by our approach to find solu-
tions that can be tailored according to the priorities of each
educational institution.

Figure 1.Number of quarantined professors (solid lines) and
cafeteria workers (dotted lines) for two different allocation
profiles (𝐴) and (𝐵). (𝐴) prioritises minimising professor
quarantine over cafeteria workers, and in (𝐵) both have
equal priority.

6 Reflections on Bridging Research and
Practice

We briefly reflect on our experiences implementing practical
tools for administrators at Mexican universities, and on our
time building an international research collaboration with
universities and research institutes within Mexico. A critical
success factor to our work was establishing a solid and fluid
working relationship with specific local councils belonging
to the National Network of State Councils of Science and
Technology (REDNACECYT)7. This allowed us to establish
collaborations with on-site facilities such as biology labs.
Moreover, the expertise of local researchers gave us insights
into the local context, including how to navigate regional
7In the case of Mexico, the national umbrella organisation supporting sci-
entific research and development is the National Council of Science and
Technology (CONACyT). In parallel, each state has an established local re-
search council from REDNACECYT. These councils fund research and serve
as a liason between the research community, practitioners, policymakers,
industry and other external stakeholders.

https://www.rednacecyt.org/conocenos
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administrative landscapes, which directly fed into the project
specification and minimised chances of failure. In our case,
we also needed to establish trust with the health experts and
university administrators who ultimately would be using our
tools. Our connections with local partners helped us main-
tain a feedback loop required in order to make the tool as
useful as possible while reducing unnecessary complexity. In
particular, administrator feedback allowed us to implement
the bucketing technique described above, which drastically
reduces the number of solutions to consider.

In addition, trust was particularly important with respect
to privacy and data ownership, especially when dealing with
sensitive health information. Here we highlight the bene-
fits of working with aggregate instead of individual-level
information, since the use of the latter not only raises ques-
tions around privacy and security, but also risks incurring
significant delays due to compliance with data protection
regulations. Instead, our algorithms were designed from the
ground up to work only with aggregate information, and
all calculations to obtain these aggregates from personal
information were performed locally by the university. This
ensured that sensitive data remained safe with the university,
without compromising the efficiency of our strategy.

We also note that our team members’ multi-lingual back-
grounds greatly helped with communications from an early
stage. Moreover, three team members are based in Mexico,
which provides local insights and improves communication
and coordination with our partner university. Our core team
is dispersed in multiple countries and cities, and we believe
that our remote-first model of collaboration will continue to
be fruitful.

7 Closing Remarks
Future work. In the immediate future, we look forward to

assessing the performance of our pilot. As test results are fun-
damentally limited, we will not be able to precisely ascertain
who within the population is infected, but we will be able to
observe test results from the solutions chosen by university
administrators, as well as the number of individuals told to
self-isolate through our containment protocol. Furthermore,
we will also assess how the populations from different cam-
puses perceive the algorithmically-assisted decision-making
process for test allocations, and comply with the subsequent
containment procedure. In addition, we will increase the
scope of the pilot to include other universities within Mex-
ico.
Looking forward, we wish to explore testing resource

allocation paradigms with richer classes of testing and con-
tainment mechanisms. Our current mechanism operates in
the regime where an institution resumes regular activity and
testing resources are utilised to preemptively prevent asymp-
tomatic individuals from spreading the virus and disrupting
these normal activities. When infection rates are sufficiently

high, policy makers may instead choose to implement a lock-
down in order to eliminate viral spread. In this regime, group
testing can instead be used to search for the healthy among
those in lockdown, rather than searching for the infected
amongst an unconstrained population. In this case, we can
formulate a similar optimisation problem for maximising
the number of healthy individuals found in a heterogeneous
population. Indeed, our testing and containment strategy
from Section 2 can be augmented to allow the mechanism
to categorically place individuals in self-isolation without
them having been in a positive test (akin to placing an entire
population category in lockdown).
Finally, a research direction we are currently exploring

is that of applying reinforcement learning techniques di-
rectly in our testing and containment paradigm. We consider
policies that have knowledge of the heterogeneity within
a population, as well as a limited testing budget to allocate
across the population, to inform containment decisions. Cru-
cially, the policy will not be memory-less, which we hope
will provide insight into non-trivial allocation mechanisms
over a longer time horizon.

Conclusion. The optimisation-based approach presented
here allocates limited COVID-19 tests within an educational
institution. We note that our approach can be applied to
any context in which a heterogeneous population can be
meaningfully partitioned into categories. Furthermore, the
web application created in collaboration with our partners
in Mexico allows university administrators to intuitively
visualise the trade-offs between different Pareto-dominant
testing strategies, facilitating their decision-making process.
As we are implementing our methodology with partner insti-
tutions in Mexico, we hope that these techniques can be of
greater social good in geographies where testing resources
are limited.
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Figure 2. Our web application allows university adminis-
trators to explore the outcomes of different Pareto-optimal
testing strategies.

is healthy and not self-isolating is infected by one of its
neighbours in the population graph.

Suppose𝑤 is an individual from𝐶𝑖 who is healthy and not
self-isolating following testing (but prior to the contagion
step). We first study the probability that 𝑤 is infected by
someone from category 𝐶 𝑗 , where 1 ≤ 𝑗 ≤ 𝑘 . As 𝑡 𝑗 groups
of size 𝑔 𝑗 are chosen for testing uniformly at random from
𝐶 𝑗 , 𝑛 𝑗 − 𝑡 𝑗𝑔 𝑗 individuals in 𝐶 𝑗 remain untested. It follows
that the number of untested contacts of𝑤 in 𝐶 𝑗 can be mod-
elled as a random variable 𝒖 ∼ Bin

(
𝑑𝑖 𝑗 ,

𝑛 𝑗−𝑡 𝑗𝑔𝑗
𝑛 𝑗

)
. Moreover,

each untested contact has an i.i.d. probability 𝑝 𝑗 of being
infected. We let ℓ𝑗 ∼ Bin(𝒖, 𝑝 𝑗 ) denote the number of in-
fected contacts of 𝑤 in 𝐶 𝑗 . Putting these together, we get
that ℓ𝑗 ∼ Bin

(
𝑑𝑖 𝑗 ,

𝑝 𝑗 (𝑛 𝑗−𝑡 𝑗𝑔𝑗 )
𝑛 𝑗

)
.

This allows us to determine the probability that𝑤 is not
infected by any of its ℓ𝑗 infected contacts in 𝐶 𝑗 . Since an
infected individual fails to infect a healthy contact with prob-
ability 1−𝜋𝑖 𝑗 , the probability that𝑤 is not infected by any of
their contacts in𝐶 𝑗 is given by (1−𝜋𝑖 𝑗 )ℓ𝑗 . In order for𝑤 to re-
main healthy in our one-step contagion model, it must avoid
infections from contacts across all categories. Thus, the over-
all probability of remaining healthy is

∏𝑘
𝑗=1 (1 − 𝜋𝑖 𝑗 )ℓ𝑗 and it

follows that𝑤 is infected with probability 1−∏𝑘
𝑗=1 (1−𝜋𝑖 𝑗 )ℓ𝑗 .

We now analyse the number of critical cases that occur
following our testing and containment mechanism under
testing strategy (𝒕,𝒈). This number can be compared to the
outcome when no tests are applied (which can be understood
as testing strategy (0, 0)) to obtain the number of critical
cases prevented by strategy (𝒕,𝒈).
Let 𝑧𝑖 denote the probability that an individual 𝑤 from

𝐶𝑖 is healthy and not self-isolating following testing (but
prior to the contagion step). Note that this can only happen
if𝑤 is either not part of any group tests, or they are tested
and the outcome is negative. These disjoint events happen

with probability 𝑛𝑖−𝑡𝑖𝑔𝑖
𝑛𝑖

𝑞𝑖 and
𝑡𝑖𝑔𝑖
𝑛𝑖

𝑞
𝑔𝑖
𝑖
, respectively. (Recall

that 𝑞𝑖 = 1 − 𝑝𝑖 .). It follows that 𝑧𝑖 =
𝑛𝑖−𝑡𝑖𝑔𝑖

𝑛𝑖
𝑞𝑖 + 𝑡𝑖𝑔𝑖

𝑛𝑖
𝑞
𝑔𝑖
𝑖
.

Next recall that a healthy individual𝑤 is infected by any
of its contacts in the contagion step with probability 1 −∏𝑘

𝑗=1 (1 − 𝜋𝑖 𝑗 )ℓ𝑗 , where we once more let

ℓ𝑗 ∼ Bin
(
𝑑𝑖 𝑗 ,

𝑝 𝑗 (𝑛 𝑗 − 𝑡 𝑗𝑔 𝑗 )
𝑛 𝑗

)
denote the number of infected contacts of𝑤 in category

𝐶 𝑗 . Moreover, if 𝑤 becomes infected in the contagion step,
they have a 𝑣𝑖 probability of becoming critical. This in turn
means that the probability that an individual in𝐶𝑖 is initially
healthy and then develops a critical infection from conta-
gion is 𝑣𝑖𝑧𝑖

(
1 − ∏𝑘

𝑗=1
(
1 − 𝜋𝑖 𝑗

) ℓ𝑗 ) . Hence the total number
of critical infections from contagion is given by the random
variable

𝑘∑
𝑖=1

𝑛𝑖𝑣𝑖𝑧𝑖

(
1 −

𝑘∏
𝑗=1

(1 − 𝜋𝑖 𝑗 )ℓ𝑗
)
.

By applying linearity of expectation and exploiting the inde-
pendence of random variables ℓ𝑗 we obtain its expectation

𝑘∑
𝑖=1

𝑛𝑖𝑣𝑖𝑧𝑖

(
1 −

𝑘∏
𝑗=1
E

[
(1 − 𝜋𝑖 𝑗 )ℓ𝑗

] )
. (2)

It remains to compute E
[
(1 − 𝜋𝑖 𝑗 )ℓ𝑗

]
. We can transform this

expression into E
[
exp(ln(1 − 𝜋𝑖 𝑗 ))ℓ𝑗 )

]
, and substitute 𝑡 =

ln(1 − 𝜋𝑖 𝑗 ) into the closed form expression of the moment-
generating function10 for a binomially distributed random
variable to obtain

E
[
(1 − 𝜋𝑖 𝑗 )ℓ𝑗

]
=

(
1 −

𝜋𝑖 𝑗𝑝 𝑗 (𝑛 𝑗 − 𝑡 𝑗𝑔 𝑗 )
𝑛 𝑗

)𝑑𝑖 𝑗
.

Substituting this expression into (2), we see that the expected
number of total critical infections from contagion under
testing strategy (𝒕,𝒈) is given by

𝑓𝐻 (𝒕,𝒈) =
𝑘∑
𝑖=1

𝑛𝑖𝑣𝑖𝑧𝑖

(
1 −

𝑘∏
𝑗=1

(
1 −

𝜋𝑖 𝑗𝑝 𝑗 (𝑛 𝑗 − 𝑡 𝑗𝑔 𝑗 )
𝑛 𝑗

)𝑑𝑖 𝑗 )
.

(3)
Note that we can determine the number of critical cases

that occur without any testing by evaluating (3) with testing
strategy (0, 0). (In this case 𝑧𝑖 is just 𝑞𝑖 .) Putting this together,
we define our healthcare objective as follows:

𝑂𝐻 (𝒕,𝒈) = 𝑓𝐻 (0, 0) − 𝑓𝐻 (𝒕,𝒈)

C The Bucketing Scheme
Both in our simulations and in the scenarios utilising the
data provided by our university partners from Mexico, the
Pareto frontier computation outputs thousands of possible
solutions, |𝑆𝑃 | > 1000. As it can be a daunting task for policy
10The moment-generating function for random variable 𝑋 ∼ Bin(𝑛, 𝑝) is
given by𝑀𝑋 (𝑡 ) = (𝑝𝑒𝑡 + 1 − 𝑝)𝑛 .
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makers to select appropriate solutions for their means, we
have developed a bucketing scheme that enables the end
user to choose as many solutions as they want the algo-
rithm to generate. The bucketing works in the following
way: for each of the objectives 𝑂𝐻 and the 𝑂𝑄,𝑖 ’s we set
bucket sizes for each, denoted by 𝜌𝐻 for the health objective
and 𝜌𝑄𝑖

for each of the quarantine objectives. For each of
the objectives, we round up each to the nearest multiple
of the bucket size, ⌊𝑂𝐻 (𝒕,𝒈)

𝜌𝐻
⌉𝜌𝐻 and ⌊𝑂𝑄,𝑖 (𝒕,𝒈)

𝜌𝑄𝑖

⌉𝜌𝑄𝑖
. We also

redefine Pareto-dominance for two distinct testing and con-
tainment mechanisms (𝒕,𝒈) and (𝒕 ′,𝒈′) by stipulating that
(𝒕,𝒈) Pareto-dominates (𝒕 ′,𝒈′) if and only if the following
hold: ⌊

𝑂𝐻 (𝒕,𝒈)
𝜌𝐻

⌉
𝜌𝐻 ≥

⌊
𝑂𝐻 (𝒕 ′,𝒈′)

𝜌𝐻

⌉
𝜌𝐻 and

⌊
𝑂𝑄,𝑖 (𝒕,𝒈)

𝜌𝑄,𝑖

⌉
𝜌𝑄,𝑖 ≤

⌊
𝑂𝑄,𝑖 (𝒕 ′,𝒈′)

𝜌𝑄,𝑖

⌉
𝜌𝑄,𝑖 ∀𝑖 ∈ [𝑛] .

To obtain the desired number of solutions we utilise binary
search. We first calculate the ranges of values taken by the
health objective and of each quarantine objectives without
bucketing in the Pareto frontier. We denote these ranges by
𝑅𝐻 for the health objective and 𝑅𝑄,𝑖 for the 𝑖-th quarantine
objective. Given these ranges, we set the initial buckets as
𝝆 = 𝑹 = (𝑅𝐻 , 𝑅𝑄,1, . . . , 𝑅𝑄,𝑘 ). We then perform binary search
over the auxiliary parameter 𝛼 ∈ [0, 1] in order to find an 𝛼

value such that the bucket sizes given by 𝝆 = 𝛼𝑹 result in
approximately the desired number of solutions.
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